

[Organisation] [Process]

Date: [Approved Date] Version [Approved version] Doc ID: [Document ID]

Page 1 (2)

Author: [Administrator]

Approver: [Approver] [Approver Role]

Declaration of Performance

In accordance with Annex III of Regulation (EU) no. 305/2011

Product identification code: BSL02EUCLT

CLT – Cross Laminated Timber

1. Intended use

Intended for use as a load-bearing, bracing or also non-load-bearing element in buildings or timber structures. May only be used in structures with predominantly static traffic loads in accordance with Eurocode 5 (EN 1995).

Manufacturer

Stora Enso Wood Products Oyj PL 309; 00101 Helsinki, Finland

Name and address of authorised representative Stora Enso WP Bad St. Leonhard GmbH Wisperndorf 4; 9462 Bad St. Leonhard, Austria

System for assessing and examining the constancy of performance System 1

Harmonised standard: not relevant Notified body:

European Assessment Document:

European Assessment Document EAD 130005-00-0304 - "Solid wood construction elements in the form of slabs or panels for load-bearing components in structures", december 2022 version ETA-14/0349 from 15.12.2022

European Technical Assessment: Technical assessment body:

Österreichisches Institut für Bautechnik (Austrian Institute for Structural

Engineering), Schenkenstraße 4,1010 Vienna, Austria Notified body: Holzforschung Austria 1359

Declared performance

Number of layers: $3 \le n \le 20$ Dimensions: thickness 42 to 360 mm, width< 3.50 m, length ≤ 16.50 m

Wood type: Sorting: dry graded Adhesive: PUR type 1 Reaction to fire: D-s2, d0

0,12 W/mK 1 and 2 according to EN 1995-1-1 Thermal conductivity λ : Service class:

Specific heat capacity c_{p:} Resistance to vapour diffusion μ : 1600 J/(kgK) 20 to 50

Durability: According to EN 350-2

Strength class: C24 according to EN 338 (≥ 90% C24/T14 / ≤ 10% C16/T11)

Timber treatment: Release of hazardous substances:

7. Specific technical documents

Requirement	Verification method Mechanical resistance and s	Numerical value/standard	
. Mechanical actions perpendicular to the pane		ability	
Strength class of lamellas	EN 338	C24 / T14	_
Modulus of elasticity:	E14 330	0247114	
parallel to the grain direction E _{0, mean}	EAD 130005-00-304, 2.2.1.2	12 000 N/mm² [2]	
perpendicular to the grain direction E _{90, mean}	EN 338	370 N/mm²	
Shear modulus	2,1,000	OT O TUMBE	
parallel to the grain direction G090mean	EN 338	690 N/mm²	
perpendicular to the grain direction.		00011//////	
rolling shear modulus G _{9090, mean}	EAD 130005-00-0304, 2.2.1.1	50 N/mm²	
Bending strength:	, , , , , , , , , , , , , , , , , , , ,		
 parallel to the grain direction f_{m, k} 	EAD 130005-00-0304, 2.2.1.1	C24, 1/k _{sys} =26.4 N/mm ² [3]	
Tensile strength:			
 perpendicular to the grain direction ft. 90, k 	EN 338	0.12 N/mm²	
Compressive strength:			
 perpendicular to the grain direction fc, 90, k 	EN 338	2,5 N/mm²	
Shear strength:	.*		
 parallel to the grain direction f_{v,090 k} 	EN 338	4,0 N/mm²	
 perpendicular to the grain direction (rolling shear strength) f_{v,8090, k} 	EAD 130005-00-0304, 2.2.1.3	spruce: min. $\{1.25; 1.45 - t_q/100\}$ [4] pine: min. $\{1.70; 1.90 - t_q/100\}$ [4] REX: min. $\{1.25; 1.45 - t_q/100\}$ [4]	
Comments: [1] CLT – Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] k_{sya} = max. {1.0;1.1 – 0,025 - n}, (n = number of 14] t_q = greatest transverse layer thickness in the cross transverse layer thickness transverse layer transverse layer thickness transverse layer thickness transverse layer thickness transverse layer thickness transverse layer transverse layer thickness transverse layer tran	boards in the cover layer)	be considered equivalent to C24/T14	
[1] CLT – Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of	boards in the cover layer)	be considered equivalent to C24/T14	
[1] CLT – Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number of 4] t ₀ = greatest transverse layer thickness in the cross the cross of t	boards in the cover layer) oss-section		
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 • n}, (n = number of l4] t _t = greatest transverse layer thickness in the cross transverse layer transverse layer thickness in the cross transverse layer transverse la	boards in the cover layer) oss-section		
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 • n}, (n = number of l4] t _q = greatest transverse layer thickness in the cross transverse layer thickness transverse layer thickness transverse layer thickness transverse layer thickness tr	boards in the cover layer) poss-section EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] ksys = max. {1.0;1.1 — 0,025 + n}, (n = number of [4] ta = greatest transverse layer thickness in the cross. [4] ta = greatest transverse layer thickness in the cross. [4] ta = greatest transverse layer thickness in the cross. [5] Mechanical actions in the panel plane [5] Strength class of lamellas [6] Modulus of elasticity: • parallel to the grain direction Eo, mean [6] Shear modulus: • parallel to the grain direction Goog, mean [6] Modulus of the grain direction G	boards in the cover layer) ss-section EN 338	C24 / T14	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas [5] Modulus of elasticity: • parallel to the grain direction E _{0, mean} [5] Shear modulus: • parallel to the grain direction G _{090, mean} [5] Bending strength:	EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 — 0,025 • n}, (n = number of 4] t _q = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction E _{0, mean} Shear modulus: • parallel to the grain direction G _{090, mean} Bending strength: • Parallel to the grain direction f _{m, k}	boards in the cover layer) poss-section EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] ksys = max. (1.0;1.1 — 0,025 + n], (n = number of [4] tq = greatest transverse layer thickness in the cross that the cross is the cross i	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] ksys = max. {1.0;1.1 — 0,025 • n}, (n = number of l4] tq = greatest transverse layer thickness in the cross transverse layer thickness transverse layer thickness in the cross transvers	EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas [3] Modulus of elasticity: • parallel to the grain direction E _{0, mean} [3] Shear modulus: • parallel to the grain direction G _{090, mean} [3] Bending strength: • Parallel to the grain direction f _{m, k} [4] Tensile strength: • Parallel to the grain direction f _{t, 0, k} [5] Compressive strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas [5] Strength class of lamellas [5] Modulus of elasticity: • parallel to the grain direction E _{0, mean} [5] Shear modulus: • parallel to the grain direction G _{090, mean} [5] Bending strength: • Parallel to the grain direction f _{m, k} [6] Tensile strength: • Parallel to the grain direction f _{t, 0, k} [6] Compressive strength: • Parallel to the grain direction f _{t, 0, k} [7] Parallel to th	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] ksys = max. (1.0;1.1 — 0,025 + n], (n = number of i4) tq = greatest transverse layer thickness in the cross layer plane. • parallel to the grain direction f _{m, k} Parallel to the grain direction f _{c, 0, k} Parallel to the grain direction f _{c, 0, k} Parallel to the grain direction f _{c, 0, k} Shear strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas [5] Strength class of lamellas [5] Modulus of elasticity: • parallel to the grain direction E _{0, mean} [5] Shear modulus: • parallel to the grain direction G _{090, mean} [5] Bending strength: • Parallel to the grain direction f _{m, k} [6] Tensile strength: • Parallel to the grain direction f _{t, 0, k} [6] Compressive strength: • Parallel to the grain direction f _{t, 0, k} [7] Parallel to th	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction E _{0, mean} Shear modulus: • parallel to the grain direction G _{090, mean} Bending strength: • Parallel to the grain direction f _{m, k} Tensile strength: • Parallel to the grain direction f _{c, 0, k} Compressive strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4] t _q = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction E _{0, mean} Shear modulus: • parallel to the grain direction G _{090, mean} Bending strength: • Parallel to the grain direction f _{m, k} Tensile strength: • Parallel to the grain direction f _{c, 0, k} Compressive strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{v, 090,k}	EN 338 EAD 130005-00-0304, 2.2.1.1 EN 338 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm²	
1] CLT — Cross Laminated Timber with transverse 2) Eo, mean= 6800 N/mm² for lamellae type "REX" 3) ksys= max, {1,0,1,1,0,025 - n}, (n = number of 4) t _{tt} = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction Eo, mean Shear modulus: • parallel to the grain direction Gogo, mean Bending strength: • Parallel to the grain direction f _{m, k} Fensile strength: • Parallel to the grain direction f _{t, 0, k} Compressive strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k}	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 130005-00-0304, 2.2.1.3	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	ons
1] CLT — Cross Laminated Timber with transverse 2) Eo, mean= 6800 N/mm² for lamellae type "REX" 3) ksys= max, {1,0,1,1,0,025 - n}, (n = number of 4) t _{tt} = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction Eo, mean Shear modulus: • parallel to the grain direction Gogo, mean Bending strength: • Parallel to the grain direction f _{m, k} Fensile strength: • Parallel to the grain direction f _{t, 0, k} Compressive strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k}	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 130005-00-0304, 2.2.1.3	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm²	ons
1] CLT — Cross Laminated Timber with transverse 22 Eo, mean = 6800 N/mm² for lamellae type "REX" 3/ ksys = max. {1.0;1.1 — 0,025 • n}, (n = number of l4) tq = greatest transverse layer thickness in the cross trength class of lamellas dodulus of elasticity: • parallel to the grain direction Eo, mean shear modulus: • parallel to the grain direction Gogo, mean Bending strength: • Parallel to the grain direction fm, k Tensile strength: • Parallel to the grain direction fc, 0, k Compressive strength: • Parallel to the grain direction fc, 0, k Shear strength: • Parallel to the grain direction fc, 0, k Cher mechanical actions Greep and duration of load Dimensional stability	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 1308 EN	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	
1] CLT — Cross Laminated Timber with transverse 2) Eo, mean= 6800 N/mm² for lamellae type "REX" 3) ksys= max, {1,0,1,1,0,025 - n}, (n = number of 4) t ₀ = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction Eo, mean Shear modulus: • parallel to the grain direction Gogo, mean Bending strength: • Parallel to the grain direction f _{m, k} Tensile strength: • Parallel to the grain direction f _{0,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Shear strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength: • Parallel to the grain direction f _{c,0,k} Compressive strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 1308 EN	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	
1] CLT — Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 — 0,025 • n}, (n = number of l4] tq = greatest transverse layer thickness in the cross transport of l4] tq = greatest transverse layer thickness in the cross lamellae transport of l4] tq = greatest transverse layer thickness in the cross lamellae lateral	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EAD 130005-00-0304, 2.2.1.3 EN 1995-1-1 Moisture content during use shal occur. According to EN 1995-1-1, the gr	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	
[1] CLT — Cross Laminated Timber with transverse [2] E _{O, mean} = 6800 N/mm² for lamellae type "REX" [3] k _{sys} = max. {1.0;1.1 — 0,025 * n}, (n = number of l4) t _q = greatest transverse layer thickness in the cross trength class of lamellas Modulus of elasticity: • parallel to the grain direction E _{0, mean} Shear modulus: • parallel to the grain direction G _{090, mean} Bending strength: • Parallel to the grain direction f _{m, k} Tensile strength: • Parallel to the grain direction f _{c, 0, k} Compressive strength: • Parallel to the grain direction f _{c, 0, k} Shear strength: • Parallel to the grain direction f _{c, 0, k} Shear strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EAD 130005-00-0304, 2.2.1.3 EN disturction of the second o	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	

The performance of the product specified above corresponds to the declared performance. The above-mentioned manufacturer is solely responsible for creating this Declaration of Performance in accordance with Regulation (EU) no. 305/2011.

Bad St. Leonhard, 01.02.2023

Christian Scharf Mill Manger