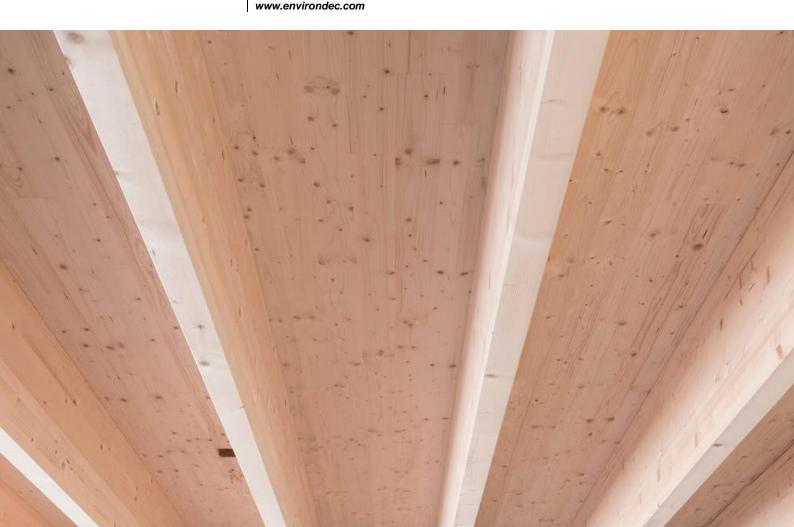
# Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:






<sup>®</sup>EPD<sup>®</sup>



| Programme:               | The International EPD <sup>®</sup> System, <u>www.environdec.com</u>                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Programme operator:      | EPD International AB                                                                                                                                                         |
| EPD registration number: | S-P-09950                                                                                                                                                                    |
| Publication date:        | 2023-10-06                                                                                                                                                                   |
| Valid until:             | 2028-10-06                                                                                                                                                                   |
|                          | An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at |



# **General information**

### Programme information

| Programme:                  | The International EPD <sup>®</sup> System |  |  |  |  |  |  |
|-----------------------------|-------------------------------------------|--|--|--|--|--|--|
|                             | EPD International AB                      |  |  |  |  |  |  |
| Address:                    | Box 210 60                                |  |  |  |  |  |  |
| Address:                    | SE-100 31 Stockholm                       |  |  |  |  |  |  |
|                             | Sweden                                    |  |  |  |  |  |  |
| Website:                    | www.environdec.com                        |  |  |  |  |  |  |
| E-mail: info@environdec.com |                                           |  |  |  |  |  |  |

### Accountabilities for PCR, LCA and independent, third-party verification

### Product Category Rules (PCR)

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product Category Rules (PCR):

PCR 2019:14, v1.2.5 Construction products (EN 15804:A2). Sub-PCR- 006, Wood and wood-based products for use in construction (EN 16485). UN CPC 314

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.

### Life Cycle Assessment (LCA)

LCA accountability: Product Sustainability, Stora Enso – Division Wood Products

### Third-party verification

Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:

EPD verification by individual verifier

Third-party verifier: Martin Erlandsson, IVL Swedish Environmental Research Institute

V HERE WANNISCON

Approved by: The International EPD<sup>®</sup> System

Procedure for follow-up of data during EPD validity involves third party verifier:

 $\boxtimes$  Yes  $\Box$  No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

**Please note:** EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

### Company information

### Owner of the EPD: Stora Enso

### Contact: Product Sustainability – Division Wood Products

<u>Description of the organisation:</u> Part of the global bioeconomy, Stora Enso is a leading provider of renewable products in packaging, biomaterials, wooden construction and paper, and one of the largest private forest owners in the world. We believe that everything that is made from fossil-based materials today can be made from a tree tomorrow. With renewable materials at the foundation, our solutions for paper, packaging, wooden construction and biomaterials are today found across continents and industries. We are active in sectors such as building, retail, food and beverages, manufacturing, publishing, pharmaceutical, cosmetics, confectionary, hygiene and textiles.

The Wood Products division is the largest sawn wood producer in Europe and a leading provider of renewable wood-based solutions for the construction industry. Our growing Building Solutions business offers building concepts to support low-carbon construction and sustainable designs. We develop digital tools to simplify the designing of building projects with wood. We also offer applications for windows, doors and for packaging industries, and our pellets provide a sustainable heating solution.

All our mills run an integrated management system, which is certified in accordance with Chain of Custody (FSC<sup>®</sup> and/or PEFC), quality management (ISO 9001), environmental management (ISO 14001), health and safety (ISO 45001), and energy management (ISO 50001) requirements.

Product-related or management system-related certifications: ISO 9001:2015 Quality Management System ISO 14001:2015 Environmental Management System ISO 45001:2018 Occupational Health and Safety Management System ISO 50001:2018 Energy Management System FSC® and PEFC Chain of Custody multi-site certificates Due Diligence System standard (FSC® Certified Wood, PEFC, Sustainable Biomass Program)

Name and location of production site(s):

| Mill name      | Location                                                      |
|----------------|---------------------------------------------------------------|
| Ybbs Sawmill   | Bahnhofstrasse 31, 3370 Ybbs an der Donau, Austria            |
| ACDF Industrie | Voie de la Grâce Dieu, 25530 Vercel-Villedieu-le-Camp, France |

This EPD covers 100 % of the Sylva<sup>™</sup> CLT Rib produced in Ybbs.

Sylva<sup>™</sup> CLT Rib produced at ACDF Industrie are covered with the "Environmental and health declaration form (French: FDES) for CLT Rib Panel products by Stora Enso" (INIES registration number: 20220930959) and can be accessed via <u>Download centre | Stora Enso</u>

## **Product information**

Product name: Sylva™ CLT Rib by Stora Enso

<u>Product identification</u>: Sylva<sup>™</sup> CLT Rib for floors and roofs is placed on the marked according to ETA-17/0911 (European Technical Assessment)

<u>Product description</u>: Sylva<sup>™</sup> CLT Rib by Stora Enso is made by bonding a CLT by Stora Enso panel and GLT (glulam) ribs with a high-strength adhesive. For outstanding performance, our Sylva<sup>™</sup> CLT Rib is made from strength-graded boards. This means we have pre-sorted the wood based on its strength, stiffness, density, and appearance for optimal use. Sylva<sup>™</sup> CLT Rib is an effective and economical solution for long spans due to their excellent material efficiency. They are available in visual quality, which means it is possible to leave ceilings and soffits exposed.

Sylva<sup>™</sup> CLT Rib floors and roofs are a great fit when the building project requires:

- Exposed wood in ceilings
- Optimal space utilization with installations such as sprinklers or lighting, acoustic panels and decorative elements
- Medium to long spans
- Fire resistance without the need to add protective cladding



## LCA information

Functional unit / declared unit: 1 m<sup>2</sup> of Sylva<sup>™</sup> CLT Rib panel with a moisture content of 12 %

<u>Reference service life:</u> The RSL is understood as the period of time until the Sylva<sup>™</sup> CLT Rib panel is replaced, rebuild, renovated or restored. If properly installed, the service lifetime of the Sylva<sup>™</sup> CLT Rib panel is equal to the lifetime of the building, and thus 50 years is the default reference service life. Wood products can reach over 100 years' service life in service classes 1 and 2.

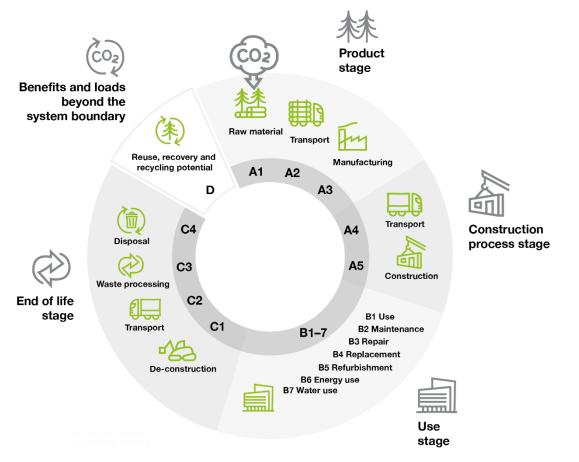
<u>Time representativeness</u>: Data for the study was collected from the CLT production sites and represents year 2020. This data includes raw material supply, transport distances, fuels, energy consumption, packaging, produced CLT by Stora Enso, further processed Sylva<sup>™</sup> CLT Rib panels, by-products and waste.

Database used: Ecoinvent 3.8 (November 2021) LCA software used: SimaPro 9.3.0.3

Description of system boundaries:

Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and additional modules).

Target group: business to business and business to consumers

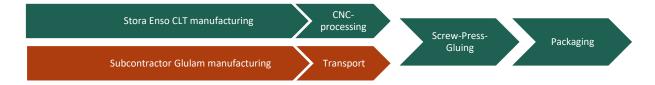

<u>Allocation:</u> Environmental impact from forestry operations is allocated to the roundwood only and nothing to forestry residues such as branches and tops.

The production of sawn timber and further processed CLT by Stora Enso results in several valuable byproducts like wood chips used for example in cellulose pulp production, as well as sawdust, bark and dry wood chips that can be used as biofuels.

The environmental impact allocation from the sawmill and further processing have been done between sawn timber and by-products as well as the main product and by-products based on economic revenue in accordance with EN 15804.

<u>Cut-Off Rule:</u> 1 %. This rule is based on the assumption that the input flows do not have a major impact on the environmental impacts as a whole. In insufficient data cases for such material flows known to have the potential to cause significant emissions into air and water or soil related to the environmental indicators, conservative "worst case" assumptions have been used when filling the data gaps.

#### System diagram:




#### Product stage:

A1: This stage covers the extraction and processing of raw materials, such as forestry operations as well as glue production. All Stora Enso's wood raw material is sourced through a third-party certified wood traceability system. Stora Enso traceability system is certified according to FSC<sup>®</sup> and PEFC Chain of Custody systems.<sup>1</sup> Glulam needed for Sylva<sup>™</sup> CLT Rib are delivered from Austrian suppliers to Ybbs mill for final manufacturing.

**A2:** This stage covers the transportation of the raw materials to the mill and the fuels needed for on-site transportation. The wood supply operations cover procurement of softwood from Austria, its neighboring countries and Sweden. Purchased logs are spruce logs transported with trucks and train.

A3: This stage covers the production of CLT by Stora Enso (Bad St. Leonhard, Gruvön, Ybbs and Zdirec) and assembly of Sylva<sup>™</sup> CLT Rib in Ybbs. Generation of electricity or heat from primary energy resources are counted. Also packaging materials and the treatment of waste not leaving the factory with the product are counted.



More information on the manufacturing process of CLT can be accessed via <u>The making of CLT by</u> <u>Stora Enso - YouTube</u>

<sup>&</sup>lt;sup>1</sup> FSC<sup>®</sup> trademark license nr. C125195

Construction process stage:

A4: This stage shows additional information such as average figures from the transportation to the construction sites. The figures show the impact of 1 m<sup>2</sup> Sylva<sup>™</sup> CLT Rib delivered to European customer from Stora Enso's Ybbs production unit. Transportation distance is a weighted average based on % of sales volumes of total Sylva<sup>™</sup> CLT Rib category.

| Scenario information                           | Values and units                                |
|------------------------------------------------|-------------------------------------------------|
| Vehicle type used for transport                | Transport, freight, lorry >32 metric ton, EURO6 |
| Fuel type and consumption of vehicle           | Low sulphur diesel 0,015969 liter/tkm           |
| Distance                                       | 634 km                                          |
| Capacity utilisation (including empty returns) | 50 %                                            |
| Bulk density of transported products           | 485,1 kg/m <sup>3</sup>                         |

**A5:** The construction process includes such packaging waste, which relates to the delivered product as well as the lifting of the Sylva<sup>™</sup> CLT Rib. No assembly of the elements is considered because of the multiple application possibilities, meaning additional metal pieces (fittings, screws) or other materials possibly needed for the installation like glues, sealants, rubbers etc. are excluded from the product system.

### Use stage:

**B1–B7:** There are no environmental impacts expected in the use phase, and at least no harmful substances are released to air, water or ground during the use of the product.

### End-of-life scenarios:

**C1–C4 and Module D:** Four alternative European average scenarios have been presented for the endof-life stage. Wood has an average content in European Construction and Demolition waste of around 2,3 %. Cascading usage should be applied and therefore re-use and recycling should be preferred over incineration. If this principle can't be followed incineration in general is a treatment with the highest net savings and therefore considered as main scenario in this EPD.<sup>2</sup>

**Please note:** The end-of-life options are scenario based and the choice of the most appropriate one can vary from situation, country and their legislation, energy and raw material availability. The options should indicate the potential environmental impact. Specific scenarios are available on request.

| See chapter | Environmental information                                                                                                                                | Additional environmental information                                                                                                                |                                                                                                                                                      |                                                                                                                                                                                          |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Scenario    | 100 % Incineration with<br>energy recovery                                                                                                               | 100 % Recycling<br>to wood chips                                                                                                                    | 100 % Re-Use<br>in coherent form                                                                                                                     | 100 % Landfill with<br>energy recovery                                                                                                                                                   |  |  |  |  |  |
| Stage C1    | Deconstruction / Demolition<br>79,4 kg which equals the d                                                                                                |                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                                          |  |  |  |  |  |
| Stage C2    | Transport to the<br>incineration site                                                                                                                    | Transport to the<br>sorting platform                                                                                                                | Transport to the<br>sorting platform                                                                                                                 | Transport to landfill                                                                                                                                                                    |  |  |  |  |  |
|             | Distance is assumed to be                                                                                                                                | 50 km in each scenario.                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                                          |  |  |  |  |  |
| Stage C3    | Crushing, site operation<br>and wood combustion.<br>Biogenic carbon flows<br>and energy stored as<br>material are balanced out<br>according to EN 16485. | Sorting and crushing<br>at the platform.<br>Biogenic carbon flows<br>and energy stored as<br>material are balanced<br>out according to EN<br>16485. | Sorting and preparing<br>at the platform.<br>Biogenic carbon flows<br>and energy stored as<br>material are balanced<br>out according to EN<br>16485. | -                                                                                                                                                                                        |  |  |  |  |  |
| Stage C4    | -                                                                                                                                                        | -                                                                                                                                                   | -                                                                                                                                                    | Landfilling (waste<br>operation, leachate<br>treatment and landfill<br>gas combustion).<br>Biogenic carbon flows<br>and energy stored as<br>material are balanced<br>out according to EN |  |  |  |  |  |

<sup>&</sup>lt;sup>2</sup> Damgaard, Anders, et al. "Background data collection and life cycle assessment for construction and demolition waste (CDW) management." (2022).

|                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                            | 16485 as if released<br>immediately without<br>taking into account<br>delayed emissions.                                                                                                                         |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module D                                             | Avoided impact of electricity production and thermal energy recovery.                                                                                                                                      | Avoided impact of<br>forestry, harvesting,<br>wood chips<br>preparation and<br>drying.                                                                                                                                                  | Avoided impact of<br>producing rib panel<br>from virgin wood.                                                                                                                                                                                              | Avoided impact of<br>electricity production<br>and thermal energy<br>recovery from landfill<br>gas.                                                                                                              |
| Additional<br>information<br>on Module<br>D scenario | For the thermal energy<br>recovery, it is assumed that<br>European average heat<br>produced from natural gas is<br>replaced. The replaced<br>electricity is referring to the<br>European average grid mix. | Wood chips produced<br>from virgin wood and<br>representing European<br>average market are<br>replaced, considering<br>additional transport and<br>energy to produce wood<br>chips in the same quality<br>from the recycled<br>product. | Rib panels produced<br>from virgin wood and<br>representing Stora<br>Enso's rib panel<br>production units, as<br>declared in this EPD, are<br>replaced, considering<br>additional energy for<br>cutting, drilling or<br>sanding of the re-used<br>product. | For the thermal energy<br>recovery, it is assumed<br>that European average<br>heat produced from<br>natural gas is replaced.<br>The replaced electricity<br>is referring to the<br>European average grid<br>mix. |

**Please note:** Module D declares potential benefits and loads of secondary material, secondary fuel or recovered energy leaving the product system. The information given in Module D lies beyond the system boundary.

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

|                     | Pro                 | duct st   | age           | proc      | ruction<br>cess<br>age    | Use stage |             |        |             |               | End-of-life stage      |                       |                            |           | Resource<br>recovery<br>stage |          |                                                 |
|---------------------|---------------------|-----------|---------------|-----------|---------------------------|-----------|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|-------------------------------|----------|-------------------------------------------------|
|                     | Raw material supply | Transport | Manufacturing | Transport | Construction installation | Use       | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing              | Disposal | Reuse-Recovery-Recycling-<br>Landfill-potential |
| Module              | A1                  | A2        | A3            | A4        | A5                        | B1        | B2          | В3     | В4          | B5            | B6                     | B7                    | C1                         | C2        | C3                            | C4       | D                                               |
| Modules<br>declared | х                   | х         | х             | х         | х                         | х         | х           | х      | Х           | х             | х                      | х                     | х                          | х         | х                             | х        | x                                               |
| Geography           | EU                  | EU        | AT            | EU        | EU                        | EU        | EU          | EU     | EU          | EU            | EU                     | EU                    | EU                         | EU        | EU                            | EU       | EU                                              |

GWP-GHG (A1-A3): specific data used: 64 %\*, variation - products: 0 %, variation - sites: 0 %.

<sup>\*</sup>The percentage of specific data is assumed to be larger than 60%, but it cannot be proved since one or several EPDs that are used as data sources lack information on the percentage of specific data used.

# **Technical information**

| Properties           | Definition                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Application          | Structural elements for floors & roofs                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| ETA number           | 20/0893                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Maximum dimensions   | Length: 12 m / Width: 2,45 m / Thickness: 0,58 m                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Wood species         | Spruce (pine, fir, stone pine/larch and other wood types on request)                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Moisture content     | 12 % +/-2 % on delivery                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Adhesives            | CLT by Stora Enso: Formaldehyde-free PUR adhesive for finger jointing<br>and surface bonding, approved for load-bearing and non-load-bearing<br>components indoors and outdoors according to EN 15425; Formaldehyde-<br>free EPI adhesive for edge bonding<br>Glulam: PUR adhesives, MUF adhesives |  |  |  |  |  |  |
| Surface quality      | Non-visual quality (NVI) and Visual quality (VI)                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Fire rating          | Sylva™ CLT Rib can be manufactured and certified to meet fire resistance requirements from REI 30 to REI90                                                                                                                                                                                         |  |  |  |  |  |  |
| Thermal conductivity | 0,12 W/(mK)                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Service class        | Service class 1 and 2 according to EN 1995-1-1                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

# **Content information**

| Product components                                                       | Weight, kg                                                                                                       | Post-consumer<br>material, weight-% | Biogenic material, weight-<br>% and kg C/m <sup>2</sup> |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| CLT by Stora Enso                                                        |                                                                                                                  |                                     |                                                         |  |  |  |  |  |  |  |
| Wood ( <i>Picea abies</i> and <i>Pinus</i> sylvestris)                   | 43,5                                                                                                             | -                                   | 54,7 % / 19,4                                           |  |  |  |  |  |  |  |
| Polyurethane (PUR) resin                                                 | 0,4                                                                                                              | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Emulsion polymer isocyanate<br>(EPI) resin                               | < 0,1                                                                                                            | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Hardener                                                                 | < 0,1                                                                                                            | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Glulam (Studiengemeinschaft Holzleimbau e.V. / EPD-SHL-20180027-IBG1-DE) |                                                                                                                  |                                     |                                                         |  |  |  |  |  |  |  |
| Wood (white wood, ~ 83% picea abies)                                     | 32,2                                                                                                             | -                                   | 40,6 % / 14,4                                           |  |  |  |  |  |  |  |
| Melamine urea formaldehyde<br>(MUF) resin                                | 0,7                                                                                                              | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Phenol resorcinol formaldehyde<br>(PRF) resin                            | < 0,1                                                                                                            | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Polyurethane (PUR) resin                                                 | < 0,1                                                                                                            | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Rib assembly                                                             |                                                                                                                  |                                     |                                                         |  |  |  |  |  |  |  |
| Screws (steel)                                                           | 1,5                                                                                                              | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| Polyurethane (PUR) resin                                                 | < 0,1                                                                                                            | -                                   | 0 % / 0                                                 |  |  |  |  |  |  |  |
| TOTAL                                                                    | 79,4                                                                                                             | -                                   | 95,3 % / 33,8                                           |  |  |  |  |  |  |  |
| Packaging materials                                                      | Weight, kg                                                                                                       | Weight-% (versus the<br>product)    | Weight biogenic carbon,<br>kg C/kg                      |  |  |  |  |  |  |  |
| Plastic wrap                                                             | < 0,1                                                                                                            | < 0,1                               | 0                                                       |  |  |  |  |  |  |  |
| TOTAL                                                                    | < 0,1                                                                                                            | < 0,1                               | 0                                                       |  |  |  |  |  |  |  |
| Dangerous substances from the candidate list of SVHC for Author          | Dangerous substances from the candidate list of SVHC for Authorisation EC No. CAS No. Weight-% per declared unit |                                     |                                                         |  |  |  |  |  |  |  |
| Total                                                                    | -                                                                                                                | -                                   | -                                                       |  |  |  |  |  |  |  |

# Biogenic carbon content at the factory gate

| Biogenic carbon content                           | Unit (expressed per declared unit)                                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Biogenic carbon content in product                | 124 kg CO <sub>2</sub> eq. / m <sup>2</sup> = 33,8 kg C / m <sup>2</sup> |  |  |  |  |  |  |  |  |  |
| Biogenic carbon content in accompanying packaging | 0 kg CO <sub>2</sub> eq. / m <sup>2</sup> = < 0,1 kg C / m <sup>2</sup>  |  |  |  |  |  |  |  |  |  |
|                                                   |                                                                          |  |  |  |  |  |  |  |  |  |

Please note: 1 kg biogenic carbon is equivalent to 44/12 kg of CO<sub>2</sub>

#### Carbon sequestration and storage:

The sequestration of carbon dioxide (CO<sub>2</sub>) is unique to renewable materials. Biogenic carbon content of a renewable material is an outcome of the CO<sub>2</sub> that has effectively been removed from the atmosphere by photosynthesis of growing trees and other plants, and turned into sugars (carbon) and oxygen. The quantity of atmospheric CO<sub>2</sub> has thus been reduced. The longer the CO<sub>2</sub> is not in the atmosphere but stays stored in a material, the greater the environmental benefit.



Biogenic carbon of wood is calculated according to the EN 16485 and 16449 standards. Half of the dry mass of wood is carbon. Each kg of stored biogenic carbon is equal to ~3.67 kg of CO<sub>2</sub>, which is effectively removed from the atmosphere. In case of an average Sylva<sup>TM</sup> CLT Rib the biogenic carbon content is -124 kg CO<sub>2</sub> eq./ m<sup>2</sup>. Biogenic carbon enters the product system in forest (module A1) and for calculation purpose it is assumed to leave latest from the product system in the end-of-life stage (module C). This assumption can be made when wood is sourced from sustainably managed forest.

# **Environmental Information**

Below tables are describing the environmental indicator results of 1 m<sup>2</sup> Sylva<sup>™</sup> CLT Rib along its life cycle. INCINERATION as the most representative end-of-life scenario in Europe is applied. The incineration scenario is describing the dismantling and chipping of CLT Rib before incineration and is replacing average European heat produced with natural gas and average European market high voltage electricity. Other end-of-life scenarios have been made available in the chapter "Additional environmental information".

|                                  | Results per declared unit – 1 m² Sylva™ CLT Rib                                                                                                                                                                                                                                                                                                                     |          |         |         |          |         |         |         |         |         |         |         |          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------|
| Indicator                        | Unit                                                                                                                                                                                                                                                                                                                                                                | A1       | A2      | A3      | A1-A3    | A4      | A5      | B1-B7   | C1      | C2      | C3      | C4      | D        |
| GWP-fossil                       | kg CO <sub>2</sub> eq.                                                                                                                                                                                                                                                                                                                                              | 1,94E+1  | 1,15E+0 | 1,25E+0 | 2,18E+1  | 4,32E+0 | 6,48E-1 | 0,00E+0 | 6,48E-1 | 3,41E-1 | 4,29E+0 | 0,00E+0 | -6,32E+1 |
| GWP-biogenic                     | kg CO <sub>2</sub> eq.                                                                                                                                                                                                                                                                                                                                              | -1,24E+2 | 6,66E-4 | 4,22E-2 | -1,24E+2 | 1,59E-3 | 1,04E-4 | 0,00E+0 | 1,04E-4 | 1,25E-4 | 1,24E+2 | 0,00E+0 | -1,16E-1 |
| GWP luluc                        | kg CO <sub>2</sub> eq.                                                                                                                                                                                                                                                                                                                                              | 1,43E-1  | 5,72E-4 | 3,18E-3 | 1,46E-1  | 1,62E-3 | 6,41E-5 | 0,00E+0 | 6,41E-5 | 1,28E-4 | 3,95E-4 | 0,00E+0 | -4,63E-2 |
| GWP total                        | kg CO <sub>2</sub> eq.                                                                                                                                                                                                                                                                                                                                              | -1,04E+2 | 1,16E+0 | 1,29E+0 | -1,02E+2 | 4,33E+0 | 6,48E-1 | 0,00E+0 | 6,48E-1 | 3,41E-1 | 1,28E+2 | 0,00E+0 | -6,34E+1 |
| ODP                              | kg CFC 11 eq.                                                                                                                                                                                                                                                                                                                                                       | 6,49E-7  | 5,01E-7 | 1,76E-7 | 1,33E-6  | 1,08E-6 | 1,37E-7 | 0,00E+0 | 1,37E-7 | 8,51E-8 | 2,98E-7 | 0,00E+0 | -8,71E-6 |
| AP                               | mol H⁺ eq.                                                                                                                                                                                                                                                                                                                                                          | 1,02E-1  | 5,65E-3 | 1,50E-2 | 1,23E-1  | 1,38E-2 | 3,23E-3 | 0,00E+0 | 3,23E-3 | 1,09E-3 | 3,42E-2 | 0,00E+0 | -2,96E-1 |
| EP-freshwater                    | kg P eq.                                                                                                                                                                                                                                                                                                                                                            | 1,58E-3  | 1,26E-5 | 5,85E-5 | 1,66E-3  | 3,09E-5 | 2,13E-6 | 0,00E+0 | 2,13E-6 | 2,43E-6 | 1,73E-5 | 0,00E+0 | -2,07E-3 |
| EP-marine                        | kg N eq.                                                                                                                                                                                                                                                                                                                                                            | 2,90E-2  | 1,18E-3 | 4,39E-3 | 3,46E-2  | 3,03E-3 | 1,25E-3 | 0,00E+0 | 1,25E-3 | 2,39E-4 | 1,57E-2 | 0,00E+0 | -3,90E-2 |
| EP-terrestrial                   | mol N eq.                                                                                                                                                                                                                                                                                                                                                           | 3,18E-1  | 1,30E-2 | 5,74E-2 | 3,89E-1  | 3,37E-2 | 1,38E-2 | 0,00E+0 | 1,38E-2 | 2,66E-3 | 1,78E-1 | 0,00E+0 | -4,35E-1 |
| POCP                             | kg NMVOC eq.                                                                                                                                                                                                                                                                                                                                                        | 5,82E-2  | 4,71E-3 | 1,18E-2 | 7,47E-2  | 1,33E-2 | 3,89E-3 | 0,00E+0 | 3,89E-3 | 1,05E-3 | 4,72E-2 | 0,00E+0 | -1,29E-1 |
| ADP minerals&metals <sup>3</sup> | kg Sb eq.                                                                                                                                                                                                                                                                                                                                                           | 1,54E-4  | 3,07E-6 | 1,55E-5 | 1,73E-4  | 1,03E-5 | 3,31E-7 | 0,00E+0 | 3,31E-7 | 8,16E-7 | 3,47E-6 | 0,00E+0 | -2,84E-5 |
| ADP-fossil <sup>3</sup>          | MJ                                                                                                                                                                                                                                                                                                                                                                  | 2,40E+2  | 3,21E+1 | 4,51E+1 | 3,17E+2  | 7,04E+1 | 8,81E+0 | 0,00E+0 | 8,81E+0 | 5,55E+0 | 2,05E+1 | 0,00E+0 | -1,07E+3 |
| WDP <sup>3</sup>                 | m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                      | 6,52E+0  | 6,47E-2 | 7,41E-1 | 7,32E+0  | 2,35E-1 | 1,26E-2 | 0,00E+0 | 1,26E-2 | 1,85E-2 | 2,12E-1 | 0,00E+0 | -4,90E+0 |
| Acronyms                         | GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching |          |         |         |          |         |         |         |         |         |         |         |          |

### Mandatory impact category indicators according to EN 15804+A2

#### Additional mandatory and voluntary impact category indicators

|           | Results per declared unit – 1 m² Sylva™ CLT Rib |         |         |         |         |         |         |         |         |         |         |         |          |
|-----------|-------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| Indicator | Unit                                            | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1-B7   | C1      | C2      | C3      | C4      | D        |
| GWP-GHG⁴  | kg CO₂ eq.                                      | 1,96E+1 | 1,16E+0 | 1,29E+0 | 2,20E+1 | 4,33E+0 | 6,48E-1 | 0,00E+0 | 6,48E-1 | 3,41E-1 | 4,31E+0 | 0,00E+0 | -6,34E+1 |

<sup>&</sup>lt;sup>3</sup> Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

<sup>&</sup>lt;sup>4</sup> This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO<sub>2</sub> is set to zero.

### **Resource use indicators**

|           |                |                |               | Results p      | er declared   | l unit – 1 m | l² Sylva™ (  | CLT Rib        |            |              |              |              |             |
|-----------|----------------|----------------|---------------|----------------|---------------|--------------|--------------|----------------|------------|--------------|--------------|--------------|-------------|
| Indicator | Unit           | A1             | A2            | A3             | A1-A3         | A4           | A5           | B1-B7          | C1         | C2           | C3           | C4           | D           |
| PERE      | MJ             | 1,98E+2        | 3,82E-1       | 9,08E+1        | 2,89E+2       | 8,95E-1      | 4,96E-2      | 0,00E+0        | 4,96E-2    | 7,06E-2      | 4,45E-1      | 0,00E+0      | -7,40E+1    |
| PERM      | MJ             | 1,25E+3        | 0,00E+0       | 0,00E+0        | 1,25E+3       | 0,00E+0      | 0,00E+0      | 0,00E+0        | 0,00E+0    | 0,00E+0      | -1,25E+3     | 0,00E+0      | 0,00E+0     |
| PERT      | MJ             | 1,45E+3        | 3,82E-1       | 9,08E+1        | 1,54E+3       | 8,95E-1      | 4,96E-2      | 0,00E+0        | 4,96E-2    | 7,06E-2      | -1,25E+3     | 0,00E+0      | -7,40E+1    |
| PENRE     | MJ             | 2,75E+2        | 3,41E+1       | 4,79E+1        | 3,57E+2       | 7,47E+1      | 9,36E+0      | 0,00E+0        | 9,36E+0    | 5,89E+0      | 2,20E+1      | 0,00E+0      | -1,16E+3    |
| PENRM     | MJ             | 2,07E+1        | 0,00E+0       | 4,97E+0        | 2,56E+1       | 0,00E+0      | -4,97E+0     | 0,00E+0        | 0,00E+0    | 0,00E+0      | -2,07E+1     | 0,00E+0      | 0,00E+0     |
| PENRT     | MJ             | 2,96E+2        | 3,41E+1       | 5,29E+1        | 3,83E+2       | 7,47E+1      | 4,39E+0      | 0,00E+0        | 9,36E+0    | 5,89E+0      | 1,28E+0      | 0,00E+0      | -1,16E+3    |
| SM        | kg             | 0,00E+0        | 0,00E+0       | 0,00E+0        | 0,00E+0       | 0,00E+0      | 0,00E+0      | 0,00E+0        | 0,00E+0    | 0,00E+0      | 0,00E+0      | 0,00E+0      | 0,00E+0     |
| RSF       | MJ             | 5,82E+0        | 0,00E+0       | 0,00E+0        | 5,82E+0       | 0,00E+0      | 0,00E+0      | 0,00E+0        | 0,00E+0    | 0,00E+0      | 0,00E+0      | 0,00E+0      | 0,00E+0     |
| NRSF      | MJ             | 0,00E+0        | 0,00E+0       | 0,00E+0        | 0,00E+0       | 0,00E+0      | 0,00E+0      | 0,00E+0        | 0,00E+0    | 0,00E+0      | 0,00E+0      | 0,00E+0      | 0,00E+0     |
| FW        | m <sup>3</sup> | 1,61E-1        | 2,52E-3       | 9,22E-2        | 2,56E-1       | 7,75E-3      | 4,44E-4      | 0,00E+0        | 4,44E-4    | 6,11E-4      | 3,83E-2      | 0,00E+0      | -3,79E-1    |
|           | PERE = Use of  | renewable prim | nary energy e | xcluding renev | vable primary | energy resou | rces used as | raw materials; | PERM = Use | of renewable | primary ener | gy resources | used as rav |

Acronyms Acronyms PERE = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources; state as raw materials; PENRT = Total use of renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; RSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

### Waste indicators

|                                 | Results per declared unit – 1 m² Sylva™ CLT Rib |         |         |         |         |         |         |         |         |         |         |         |          |  |  |
|---------------------------------|-------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|--|--|
| Indicator                       | Unit                                            | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1-B7   | C1      | C2      | C3      | C4      | D        |  |  |
| Hazardous waste<br>disposed     | kg                                              | 4,30E-3 | 8,14E-5 | 4,00E-2 | 4,44E-2 | 1,70E-4 | 2,41E-5 | 0,00E+0 | 2,41E-5 | 1,34E-5 | 5,76E-5 | 0,00E+0 | -7,92E-4 |  |  |
| Non-hazardous waste<br>disposed | kg                                              | 1,37E+0 | 1,25E+0 | 5,92E-1 | 3,22E+0 | 6,58E+0 | 1,18E-2 | 0,00E+0 | 1,18E-2 | 5,19E-1 | 5,50E-1 | 0,00E+0 | -1,60E+0 |  |  |
| Radioactive waste<br>disposed   | kg                                              | 8,56E-3 | 2,22E-4 | 5,11E-4 | 9,29E-3 | 4,77E-4 | 6,08E-5 | 0,00E+0 | 6,08E-5 | 3,76E-5 | 1,07E-4 | 0,00E+0 | -4,97E-3 |  |  |

### **Output flow indicators**

|                                  | Results per declared unit – 1 m² Sylva™ CLT Rib |         |         |         |         |         |         |         |         |         |         |         |         |  |  |
|----------------------------------|-------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Indicator                        | Unit                                            | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1-B7   | C1      | C2      | C3      | C4      | D       |  |  |
| Components for re-<br>use        | kg                                              | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 1,08E-1 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 |  |  |
| Material for recycling           | kg                                              | 0,00E+0 |  |  |
| Materials for energy<br>recovery | kg                                              | 0,00E+0 | 7,84E+1 | 0,00E+0 | 0,00E+0 |  |  |
| Exported energy,<br>electricity  | MJ                                              | 0,00E+0 | 0,00E+0 | 9,00E-1 | 9,00E-1 | 0,00E+0 |  |  |
| Exported energy,<br>thermal      | MJ                                              | 0,00E+0 | 0,00E+0 | 4,81E-1 | 4,81E-1 | 0,00E+0 |  |  |

# Additional environmental Information – alternative end-of-life scenarios Re-Use / Recycling / Landfill

|                                  |                                                                              |                                  |                               | Re-use                         |                             |                            |                              |             | Recycling    | 3                              |                                | Landfill                    |                            |                                 |                               |                         |  |
|----------------------------------|------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------|------------------------------|-------------|--------------|--------------------------------|--------------------------------|-----------------------------|----------------------------|---------------------------------|-------------------------------|-------------------------|--|
| Indicator                        | Unit                                                                         | C1                               | C2                            | C3                             | C4                          | D                          | C1                           | C2          | C3           | C4                             | D                              | C1                          | C2                         | C3                              | C4                            | D                       |  |
| GWP-fossil                       | kg CO₂ eq.                                                                   | 6,48E-1                          | 3,41E-1                       | 0,00E+0                        | 0,00E+0                     | -1,98E+1                   | 6,48E-1                      | 3,41E-1     | 9,21E-1      | 0,00E+0                        | -2,65E+0                       | 6,48E-1                     | 3,41E-1                    | 0,00E+0                         | 7,52E-1                       | -7,38E-3                |  |
| GWP-biogenic                     | kg CO <sub>2</sub> eq                                                        | 1,04E-4                          | 1,25E-4                       | 1,24E+2                        | 0,00E+0                     | -1,83E-1                   | 1,04E-4                      | 1,25E-4     | 1,24E+2      | 0,00E+0                        | -2,52E-2                       | 1,04E-4                     | 1,25E-4                    | 0,00E+0                         | 1,62E+2                       | -2,26E-                 |  |
| GWP luluc                        | kg CO <sub>2</sub> eq                                                        | 6,41E-5                          | 1,28E-4                       | 0,00E+0                        | 0,00E+0                     | -1,39E-1                   | 6,41E-5                      | 1,28E-4     | 9,19E-5      | 0,00E+0                        | -3,03E-2                       | 6,41E-5                     | 1,28E-4                    | 0,00E+0                         | 1,69E-4                       | -9,06E-                 |  |
| GWP total                        | kg CO₂ eq                                                                    | 6,48E-1                          | 3,41E-1                       | 1,24E+2                        | 0,00E+0                     | -2,01E+1                   | 6,48E-1                      | 3,41E-1     | 1,25E+2      | 0,00E+0                        | -2,71E+0                       | 6,48E-1                     | 3,41E-1                    | 0,00E+0                         | 1,62E+2                       | -7,41E-                 |  |
| ODP                              | kg CFC 11 eq.                                                                | 1,37E-7                          | 8,51E-8                       | 0,00E+0                        | 0,00E+0                     | -1,06E-6                   | 1,37E-7                      | 8,51E-8     | 1,97E-7      | 0,00E+0                        | -1,88E-7                       | 1,37E-7                     | 8,51E-8                    | 0,00E+0                         | 2,41E-7                       | -7,31E-1                |  |
| AP                               | mol H⁺ eq.                                                                   | 3,23E-3                          | 1,09E-3                       | 0,00E+0                        | 0,00E+0                     | -1,07E-1                   | 3,23E-3                      | 1,09E-3     | 9,57E-3      | 0,00E+0                        | -2,23E-2                       | 3,23E-3                     | 1,09E-3                    | 0,00E+0                         | 5,68E-3                       | -2,32E-                 |  |
| EP-freshwater                    | kg P eq.                                                                     | 2,13E-6                          | 2,43E-6                       | 0,00E+0                        | 0,00E+0                     | -1,57E-3                   | 2,13E-6                      | 2,43E-6     | 3,05E-6      | 0,00E+0                        | -3,91E-4                       | 2,13E-6                     | 2,43E-6                    | 0,00E+0                         | 8,10E-6                       | -4,09E-                 |  |
| EP-marine                        | kg N eq.                                                                     | 1,25E-3                          | 2,39E-4                       | 0,00E+0                        | 0,00E+0                     | -2,86E-2                   | 1,25E-3                      | 2,39E-4     | 4,23E-3      | 0,00E+0                        | -5,76E-3                       | 1,25E-3                     | 2,39E-4                    | 0,00E+0                         | 4,43E-3                       | -3,51E-                 |  |
| EP-terrestrial                   | mol N eq.                                                                    | 1,38E-2                          | 2,66E-3                       | 0,00E+0                        | 0,00E+0                     | -3,23E-1                   | 1,38E-2                      | 2,66E-3     | 4,64E-2      | 0,00E+0                        | -6,71E-2                       | 1,38E-2                     | 2,66E-3                    | 0,00E+0                         | 2,34E-2                       | -3,99E-                 |  |
| POCP                             | kg NMVOC eq.                                                                 | 3,89E-3                          | 1,05E-3                       | 0,00E+0                        | 0,00E+0                     | -5,82E-2                   | 3,89E-3                      | 1,05E-3     | 1,28E-2      | 0,00E+0                        | -2,25E-2                       | 3,89E-3                     | 1,05E-3                    | 0,00E+0                         | 1,87E-2                       | -1,16E-                 |  |
| ADP minerals&metals <sup>3</sup> | kg Sb eq.                                                                    | 3,31E-7                          | 8,16E-7                       | 0,00E+0                        | 0,00E+0                     | -1,64E-4                   | 3,31E-7                      | 8,16E-7     | 4,74E-7      | 0,00E+0                        | -2,59E-5                       | 3,31E-7                     | 8,16E-7                    | 0,00E+0                         | 2,20E-6                       | -4,36E-                 |  |
| ADP-fossil <sup>3</sup>          | MJ                                                                           | 8,81E+0                          | 5,55E+0                       | 0,00E+0                        | 0,00E+0                     | -2,89E+2                   | 8,81E+0                      | 5,55E+0     | 1,26E+1      | 0,00E+0                        | -5,63E+1                       | 8,81E+0                     | 5,55E+0                    | 0,00E+0                         | 1,74E+1                       | -1,43E-                 |  |
| WDP <sup>3</sup>                 | m <sup>3</sup>                                                               | 1,26E-2                          | 1,85E-2                       | 0,00E+0                        | 0,00E+0                     | -6,94E+0                   | 1,26E-2                      | 1,85E-2     | 1,80E-2      | 0,00E+0                        | -3,36E+0                       | 1,26E-2                     | 1,85E-2                    | 0,00E+0                         | 9,04E-2                       | -9,11E-                 |  |
| GWP-GHG <sup>4</sup>             | kg CO₂ eq.                                                                   | 6,48E-1                          | 3,41E-1                       | 0,00E+0                        | 0,00E+0                     | -2,00E+1                   | 6,48E-1                      | 3,41E-1     | 9,21E-1      | 0,00E+0                        | -2,68E+0                       | 6,48E-1                     | 3,41E-1                    | 0,00E+0                         | 4,45E+1                       | -7,41E-                 |  |
| PERE                             | MJ                                                                           | 4,96E-2                          | 7,06E-2                       | 0,00E+0                        | 0,00E+0                     | -2,75E+2                   | 4,96E-2                      | 7,06E-2     | 7,10E-2      | 0,00E+0                        | -4,88E+2                       | 4,96E-2                     | 7,06E-2                    | 0,00E+0                         | 7,70E-1                       | -1,46E                  |  |
| PERM                             | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | -1,25E+3                       | 0,00E+0                     | -1,19E+3                   | 0,00E+0                      | 0,00E+0     | -1,25E+3     | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | -1,25E+3                      | 0,00E+                  |  |
| PERT                             | MJ                                                                           | 4,96E-2                          | 7,06E-2                       | -1,25E+3                       | 0,00E+0                     | -1,46E+3                   | 4,96E-2                      | 7,06E-2     | -1,25E+3     | 0,00E+0                        | -4,88E+2                       | 4,96E-2                     | 7,06E-2                    | 0,00E+0                         | -1,25E+3                      | -1,46E-                 |  |
| PENRE                            | MJ                                                                           | 9,36E+0                          | 5,89E+0                       | 0,00E+0                        | 0,00E+0                     | -3,26E+2                   | 9,36E+0                      | 5,89E+0     | 1,34E+1      | 0,00E+0                        | -6,02E+1                       | 9,36E+0                     | 5,89E+0                    | 0,00E+0                         | 1,85E+1                       | -1,54E                  |  |
| PENRM                            | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | -2,07E+1                       | 0,00E+0                     | -2,44E+1                   | 0,00E+0                      | 0,00E+0     | -2,07E+1     | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | -2,07E+1                      | 0,00E+                  |  |
| PENRT                            | MJ                                                                           | 9,36E+0                          | 5,89E+0                       | -2,07E+1                       | 0,00E+0                     | -3,51E+2                   | 9,36E+0                      | 5,89E+0     | -7,26E+0     | 0,00E+0                        | -6,02E+1                       | 9,36E+0                     | 5,89E+0                    | 0,00E+0                         | -2,16E+0                      | -1,54E-                 |  |
| SM                               | kg                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| RSF                              | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | -5,53E+0                   | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| NRSF                             | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| FW                               | m <sup>3</sup>                                                               | 4,44E-4                          | 6,11E-4                       | 0,00E+0                        | 0,00E+0                     | -2,42E-1                   | 4,44E-4                      | 6,11E-4     | 6,37E-4      | 0,00E+0                        | -1,04E-1                       | 4,44E-4                     | 6,11E-4                    | 0,00E+0                         | 2,20E-2                       | -6,98E                  |  |
| HWD                              | kg                                                                           | 2,41E-5                          | 1,34E-5                       | 0,00E+0                        | 0,00E+0                     | -4,21E-2                   | 2,41E-5                      | 1,34E-5     | 3,46E-5      | 0,00E+0                        | -6,59E-5                       | 2,41E-5                     | 1,34E-5                    | 0,00E+0                         | 2,14E-5                       | -1,07E-                 |  |
| NHWD                             | kg                                                                           | 1,18E-2                          | 5,19E-1                       | 0,00E+0                        | 0,00E+0                     | -3,04E+0                   | 1,18E-2                      | 5,19E-1     | 1,69E-2      | 0,00E+0                        | -6,02E-1                       | 1,18E-2                     | 5,19E-1                    | 0,00E+0                         | 1,57E+2                       | -2,87E-                 |  |
| RWD                              | kg                                                                           | 6,08E-5                          | 3,76E-5                       | 0,00E+0                        | 0,00E+0                     | -8,74E-3                   | 6,08E-5                      | 3,76E-5     | 8,72E-5      | 0,00E+0                        | -2,54E-4                       | 6,08E-5                     | 3,76E-5                    | 0,00E+0                         | 1,13E-4                       | -6,35E-                 |  |
| CRU                              | kg                                                                           | 0,00E+0                          | 0,00E+0                       | 7,84E+1                        | 0,00E+0                     | 5,00E-2                    | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| MFR                              | kg                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                      | 0,00E+0     | 7,84E+1      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| MER                              | kg                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 0,00E+0                       | 0,00E+                  |  |
| EEE                              | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | -7,90E-1                   | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 5,10E-2                       | 0,00E+                  |  |
| EET                              | MJ                                                                           | 0,00E+0                          | 0,00E+0                       | 0,00E+0                        | 0,00E+0                     | -3,92E-1                   | 0,00E+0                      | 0,00E+0     | 0,00E+0      | 0,00E+0                        | 0,00E+0                        | 0,00E+0                     | 0,00E+0                    | 0,00E+0                         | 3,54E-2                       | 0,00E+                  |  |
|                                  | GWP-fossil = Glo<br>of the stratosphe<br>Eutrophication po<br>ADP-minerals&m | ric ozone lay<br>otential, fract | er; AP = Aci<br>ion of nutrie | dification pot<br>nts reaching | ential, Accui<br>marine end | mulated Exce<br>compartmer | eedance; EP<br>ht; EP-terres | -freshwater | = Eutrophica | tion potentia<br>ential, Accur | I, fraction of<br>nulated Exce | nutrients rea<br>edance; PO | ching freshv<br>CP = Forma | vater end cor<br>ation potentia | mpartment; I<br>al of troposp | EP-marine<br>heric ozor |  |

water consumption; PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water; HWD = Hazardous waste; NHWD = Non-hazardous waste; RWD = Radioactive waste; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy, electric; EET = Exported energy, thermal; \*

| •                                                       | 0 /                                             |         | •        |         |         |         | -        |         |          |          |         |         |          |  |  |
|---------------------------------------------------------|-------------------------------------------------|---------|----------|---------|---------|---------|----------|---------|----------|----------|---------|---------|----------|--|--|
|                                                         | Results per declared unit – 1 m² Sylva™ CLT Rib |         |          |         |         |         |          |         |          |          |         |         |          |  |  |
| Indicator                                               | Unit                                            | A1      | A2       | A3      | A1-A3   | A4      | A5       | B1-B7   | C1       | C2       | C3      | C4      | D        |  |  |
| Particulate matter<br>emissions                         | Disease<br>incidence                            | 3,37E-6 | 9,10E-8  | 1,71E-7 | 3,63E-6 | 3,78E-7 | 5,06E-8  | 0,00E+0 | 5,06E-8  | 2,98E-8  | 4,46E-7 | 0,00E+0 | -1,65E-6 |  |  |
| lonising radiation,<br>human health <sup>5</sup>        | kBq U235 eq.                                    | 1,13E+0 | 1,42E-1  | 9,07E-1 | 2,18E+0 | 3,05E-1 | 3,75E-2  | 0,00E+0 | 3,75E-2  | 2,41E-2  | 7,13E-2 | 0,00E+0 | -4,87E+0 |  |  |
| Ecotoxicity (freshwater) <sup>3</sup>                   | CTUe                                            | 4,76E+2 | 2,14E+1  | 1,13E+2 | 6,11E+2 | 5,50E+1 | 5,16E+0  | 0,00E+0 | 5,16E+0  | 4,34E+0  | 3,14E+1 | 0,00E+0 | -3,51E+2 |  |  |
| Human toxicity, cancer<br>effects <sup>3</sup>          | CTUh                                            | 4,92E-8 | 5,08E-10 | 1,97E-9 | 5,16E-8 | 1,50E-9 | 5,80E-10 | 0,00E+0 | 5,80E-10 | 1,18E-10 | 2,38E-8 | 0,00E+0 | -1,38E-8 |  |  |
| Human toxicity, non-<br>cancer effects <sup>3</sup>     | CTUh                                            | 3,74E-7 | 1,50E-8  | 5,64E-8 | 4,45E-7 | 5,78E-8 | 3,55E-9  | 0,00E+0 | 3,55E-9  | 4,56E-9  | 7,67E-8 | 0,00E+0 | -2,54E-7 |  |  |
| Land use related<br>impacts / soil quality <sup>3</sup> | dimensionless                                   | 1,12E+4 | 1,83E+1  | 1,97E+2 | 1,14E+4 | 8,05E+1 | 1,12E+0  | 0,00E+0 | 1,12E+0  | 6,35E+0  | 4,22E+0 | 0,00E+0 | -9,41E+1 |  |  |

### Additional impact category indicators according to EN 15804+A2 – all modules including incineration end-of-life scenario

### Additional impact category indicators according to EN 15804+A2 - alternative end-of-life scenarios Re-Use / Recycling / Landfill

|                                                         |                   |          |          | Res     | ults per | declared | l unit – 1 | m <sup>2</sup> Sylva | a™ CLT ∣ | Rib      |          |          |          |         |          |           |
|---------------------------------------------------------|-------------------|----------|----------|---------|----------|----------|------------|----------------------|----------|----------|----------|----------|----------|---------|----------|-----------|
| Re-use                                                  |                   |          |          |         |          |          |            |                      |          | Landfill |          |          |          |         |          |           |
| Indicator                                               | Unit              | C1       | C2       | C3      | C4       | D        | C1         | C2                   | C3       | C4       | D        | C1       | C2       | C3      | C4       | D         |
| Particulate matter<br>emissions                         | Disease incidence | 5,06E-8  | 2,98E-8  | 0,00E+0 | 0,00E+0  | -3,20E-6 | 5,06E-8    | 2,98E-8              | 2,54E-7  | 0,00E+0  | -8,41E-7 | 5,06E-8  | 2,98E-8  | 0,00E+0 | 1,22E-7  | -5,90E-11 |
| Ionising radiation, human<br>health⁵                    | kBq U235 eq.      | 3,75E-2  | 2,41E-2  | 0,00E+0 | 0,00E+0  | -2,02E+0 | 3,75E-2    | 2,41E-2              | 5,38E-2  | 0,00E+0  | -3,20E-1 | 3,75E-2  | 2,41E-2  | 0,00E+0 | 8,04E-2  | -7,55E-4  |
| Ecotoxicity (freshwater) <sup>3</sup>                   | CTUe              | 5,16E+0  | 4,34E+0  | 0,00E+0 | 0,00E+0  | -5,73E+2 | 5,16E+0    | 4,34E+0              | 7,39E+0  | 0,00E+0  | -1,27E+2 | 5,16E+0  | 4,34E+0  | 0,00E+0 | 1,48E+1  | -4,35E-2  |
| Human toxicity, cancer<br>effects <sup>3</sup>          | CTUh              | 5,80E-10 | 1,18E-10 | 0,00E+0 | 0,00E+0  | -4,88E-8 | 5,80E-10   | 1,18E-10             | 2,86E-10 | 0,00E+0  | -1,89E-8 | 5,80E-10 | 1,18E-10 | 0,00E+0 | 5,00E-10 | -1,28E-12 |
| Human toxicity, non-<br>cancer effects <sup>3</sup>     | CTUh              | 3,55E-9  | 4,56E-9  | 0,00E+0 | 0,00E+0  | -4,17E-7 | 3,55E-9    | 4,56E-9              | 5,36E-9  | 0,00E+0  | -8,15E-8 | 3,55E-9  | 4,56E-9  | 0,00E+0 | 6,52E-8  | -3,49E-11 |
| Land use related impacts<br>/ soil quality <sup>3</sup> | dimensionless     | 1,12E+0  | 6,35E+0  | 0,00E+0 | 0,00E+0  | -1,08E+4 | 1,12E+0    | 6,35E+0              | 1,61E+0  | 0,00E+0  | -2,65E+3 | 1,12E+0  | 6,35E+0  | 0,00E+0 | 4,53E+1  | -1,25E-2  |

<sup>&</sup>lt;sup>3</sup> Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

<sup>&</sup>lt;sup>5</sup> Disclaimer: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

# References

EPD International (2021): General Programme Instructions for the International EPD® System. version 4.0 dated 2021-03-29.

EPD International (2018): PCR 2019:14 Construction products, version 1.2.5, dated 2022-11-01

EPD International (2021): C-PCR-006 (to PCR 2019:14). Wood and wood-based products for use in construction, version 2019-12-20

### Standards

EN 15804:2012 + A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

EN 16485:2014 Round and sawn timber. Environmental product declarations. Product category rules for wood and wood-based products for use in construction

EN 16449:2014 Wood and wood-based products. Calculation of the biogenic carbon content of wood and conversion to carbon dioxide

EN 15942:2012 Sustainability of construction works - Environmental product declarations - Communication format business-to-business

ISO 14025:2010 Environmental labels and declarations. Type III environmental declarations. Principles and procedures.

ISO 14044:2006 Environmental management. Life Cycle Assessment. Requirements and guidelines.

### **Detailed product information**





More about CLT on our websiteCLT technical brochureCross-laminated timber (CLT) - Mass timber construction | Stora Enso

### EPD owner and LCA author

Stora Enso Division Wood Products E-mail sustainability.wp@storaenso.com Tel +358 2046 114 www.storaenso.com

