

[Organisation] [Process]

Date: [Approved Date]
Version [Approved version]
Doc ID: [Document ID]

Page 1 (2)

Author: [Administrator]

Approver: [Approver]
[Approver Role]

Declaration of Performance

In accordance with Annex III of Regulation (EU) no. 305/2011

Product identification code: YBB04EUCLT

CLT – Cross Laminated Timber

1. Intended use

Intended for use as a load-bearing, bracing or also non-load-bearing element in buildings or timber structures. May only be used in structures with predominantly static traffic loads in accordance with Eurocode 5 (EN 1995).

2. Manufacturer

Stora Enso Wood Products Oyj PL 309; 00101 Helsinki, Finland

3. Name and address of authorised representative

Stora Enso Wood Products GmbH Bahnhofstraße 31, 3370 Ybbs, Austria

 System for assessing and examining the constancy of performance System 1

5.

a) <u>Harmonised standard</u>: not relevant Notified body: not relevant

b) European Assessment Document: European Assessment Document EAD 130005-00-0304 – "Solid wood

construction elements in the form of slabs or panels for load-bearing

components in structures", december 2022 version

European Technical Assessment: ETA-14/0349 from 15.12.2022

<u>Technical assessment body</u>: Österreichisches Institut für Bautechnik (Austrian Institute for Structural

Engineering), Schenkenstraße 4,1010 Vienna, Austria

Notified body: Holzforschung Austria 1359

6. Declared performance

Number of layers: $3 \le n \le 20$

Dimensions: thickness 42 to 360 mm, width< 3.50 m, length ≤ 16.50 m

Wood type: WPPA
Sorting: dry graded
Adhesive: PUR type 1
Reaction to fire: D-s2, d0
Thermal conductivity λ: 0,12 W/mK

Service class: 1 and 2 according to EN 1995-1-1

Specific heat capacity $c_{p:}$ 1600 J/(kgK) Resistance to vapour diffusion μ : 20 to 50

Durability: According to EN 350-2

Strength class: C24 according to EN 338 (≥ 90% C24/T14 / ≤ 10% C16/T11)

Timber treatment: NPD Release of hazardous substances: NPD

7. Specific technical documents

Requirement	Verification method		al value/standard	
Machanical actions named in Janta the name	Mechanical resistance and st	ability		
. Mechanical actions perpendicular to the par Strength class of lamellas	EN 338	C24 / T14		
Modulus of elasticity:	EN 336	C24 / 114		
parallel to the grain direction E _{0, mean}	EAD 130005-00-304, 2.2.1.2	12 000 N/mm² [2]		
 parametro the grain direction E_{0, mean} perpendicular to the grain direction E_{90, mean} 		370 N/mm²		
hear modulus	1 EN 336	370 14/111111		
parallel to the grain direction G090mean	EN 338	690 N/mm²		
	EN 338	090 N/IIIII		
 perpendicular to the grain direction, rolling shear modulus G_{9090, mean} 	EAD 130005-00-0304, 2.2.1.1	50 N/mm²		
Bending strength:	LAD 130003-00-0304, 2.2.1.1	30 14/111111		
parallel to the grain direction f _{m. k}	EAD 130005-00-0304, 2.2.1.1	C24, 1/k _{svs} •26.4 N/mi	m² [3]	
ensile strength:	LAB 100000-00-0004, 2.2.1.1	024, 1/Rsys -20.4 14/1111	[0]	
 perpendicular to the grain direction f_{t. 90. k} 	EN 338	0.12 N/mm²		
compressive strength:	LIV 000	0.1214/11111		
 perpendicular to the grain direction f_{c. 90, k} 	EN 338	2,5 N/mm²		
hear strength:	2.1, 500	2,0 14/111111		
parallel to the grain direction f _{v,090 k}	EN 338	4,0 N/mm²		
parallel to the grain direction 10,090 k perpendicular to the grain direction	EAD 130005-00-0304, 2.2.1.3	spruce: min. {1.25; 1.4	45 – t ₋ /100} [4]	
(rolling shear strength) f _{v,9090, k}	LAD 100000-00-0004, 2.2.1.3	pine: min. {1.70; 1.90		
(rolling shear strength) Iv,9090, k			REX: min. {1.76, 1.90 – t _q /100} [4]	
		1127111111111 (1,20, 1,10	τφ. σο <u>η [.]</u>	
Comments: 1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number o 4] t _q = greatest transverse layer thickness in the c	f boards in the cover layer)	be considered equivalent to C2	4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number o t] tq = greatest transverse layer thickness in the c	f boards in the cover layer) ross-section		·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number o 4] t _q = greatest transverse layer thickness in the complete the complete transverse layer thickness in the complete layer thickness in the complete layer thickness of lamellas	f boards in the cover layer)	be considered equivalent to C2	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of t] t _q = greatest transverse layer thickness in the complete layer thickness of lamellas dodulus of elasticity:	f boards in the cover layer) ross-section EN 338	C24 / T14	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2[Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of 1] t _q = greatest transverse layer thickness in the companied to the companied transverse layer thickness in the companied transverse	f boards in the cover layer) ross-section		·4/T14	
1] CLT – Cross Laminated Timber with transverse 2 E _{O, mean} = 6800 N/mm² for lamellae type "REX" 3 k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number o 4 t _q = greatest transverse layer thickness in the comparison of the compa	EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0,1.1 – 0,025 • n}, (n = number of 1] tq = greatest transverse layer thickness in the comparison of the comparison	f boards in the cover layer) ross-section EN 338	C24 / T14	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0,1.1 – 0,025 • n}, (n = number o 4] tq = greatest transverse layer thickness in the companies of lamellas declarations in the panel plane of lamellas declarations of lamellas declar	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3	C24 / T14 12 000 N/mm² 460 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of t] t _q = greatest transverse layer thickness in the comparison of the compari	EN 338 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of 4] t _q = greatest transverse layer thickness in the company of 4. The strength class of lamellas dodulus of elasticity: • parallel to the grain direction Eo, mean of the parallel to the grain direction Good, mean of the grain direction Good, mean of the grain direction for the grain d	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean = 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number o 4] t _q = greatest transverse layer thickness in the content of the	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.3	C24 / T14 12 000 N/mm² 460 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number of t] tq = greatest transverse layer thickness in the color of the	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of 4] t _q = greatest transverse layer thickness in the content of t	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm²	·4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of t] t _q = greatest transverse layer thickness in the color of t _t = greatest transverse layer thickness in the color of the col	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	-4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 5] K _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number or utility) for lamellae type "REX" by the greatest transverse layer thickness in the complete or the greatest transverse layer thickness in the complete or the greatest transverse layer thickness in the complete or the greatest layer thickness of the complete or the greatest layer thickness of th	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	-4/T14	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean 6800 N/mm² for lamellae type "REX" 3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number o t] tq = greatest transverse layer thickness in the content of the strength class of lamellas dodulus of elasticity: • parallel to the grain direction Eo, mean defending strength: • Parallel to the grain direction f _{m, k} fersile strength: • Parallel to the grain direction f _{t, 0, k} compressive strength: • Parallel to the grain direction f _{c, 0, k} defends the grain direction f _{c, 0, k} defends the grain direction f _{c, 0, k} defends the grain direction f _{v, 090,k}	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	-4/T14	
I] CLT − Cross Laminated Timber with transverse 2] Eo, mean= 6800 N/mm² for lamellae type "REX" 5] k _{sys} = max. {1.0;1.1 − 0,025 • n}, (n = number o t] t _q = greatest transverse layer thickness in the color trength class of lamellas dodulus of elasticity: • parallel to the grain direction E _{0, mean} thear modulus: • parallel to the grain direction G _{090, mean} tending strength: • Parallel to the grain direction f _{m, k} tensile strength: • Parallel to the grain direction f _{t, 0, k} tompressive strength: • Parallel to the grain direction f _{c, 0, k} thear strength: • Parallel to the grain direction f _{v, 090,k} • Cother mechanical actions	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm²	-4/T14	
CLT - Cross Laminated Timber with transverse; Eo, mean = 6800 N/mm² for lamellae type "REX" Is, sys = max. {1.0;1.1 - 0,025 • n}, (n = number o.) Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = Iq	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 318 EN 1995-1-1	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²		
CLT - Cross Laminated Timber with transverse; Eo, mean = 6800 N/mm² for lamellae type "REX" Is, sys = max. {1.0;1.1 - 0,025 • n}, (n = number o.) Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = greatest transverse layer thickness in the color Iq = Iq	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338 EN 338	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²		
] CLT − Cross Laminated Timber with transverse;] Eo, mean = 6800 N/mm² for lamellae type "REX"] k _{sys} = max. {1.0;1.1 − 0,025 • n}, (n = number of the part of	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338 EN 338 EN 130005-00-0304, 2.2.1.3 EN 1995-1-1 Moisture content during use sha occur.	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	that adverse deformations	
CLT − Cross Laminated Timber with transverse; Eo, mean= 6800 N/mm² for lamellae type "REX" ksys = max. {1.0;1.1 − 0,025 • n}, (n = number o tq = greatest transverse layer thickness in the comment of the commen	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338 EN 338 EN 1995-1-1 Moisture content during use sha	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	that adverse deformations	
I] CLT − Cross Laminated Timber with transverse 2] Eo, meam = 6800 N/mm² for lamellae type "REX" Sl, ksys = max. {1.0;1.1 − 0,025 • n}, (n = number of tq = greatest transverse layer thickness in the color tq = greatest transverse layer thickness in the color Mechanical actions in the panel plane strength class of lamellas flodulus of elasticity: • parallel to the grain direction Eo, mean element modulus: • parallel to the grain direction Goso, mean elementing strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength: • Parallel to the grain direction f _{tt, 0, k} compressive strength:	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 130005-00-0304, 2.2.1.1 EN 338 EN 1995-1-1 Moisture content during use sha occur. According to EN 1995-1-1, the g	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	that adverse deformations	
1] CLT – Cross Laminated Timber with transverse 2] Eo, mean 6800 N/mm² for lamellae type "REX" 3] k _{sys} = max. {1.0;1.1 – 0,025 • n}, (n = number of t] t _q = greatest transverse layer thickness in the color of t _t = greatest transverse layer thickness in the color of the col	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 1995-1-1 Moisture content during use sha occur. According to EN 1995-1-1, the g	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	that adverse deformations is taken as a reference.	
I] CLT – Cross Laminated Timber with transverse [2] Eo, mean= 6800 N/mm² for lamellae type "REX" [3] ksys = max. {1.0;1.1 – 0,025 • n}, (n = number oil) tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest transverse layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in the color oil tq = greatest layer thickness in tq = greatest layer thickn	EN 338 EAD 130005-00-0304, 2.2.1.1 EAD 130005-00-0304, 2.2.1.1 EN 338 EN 338 EN 338 EN 338 EN 338 EN 338 EN 130005-00-0304, 2.2.1.3 EN 1995-1-1 Moisture content during use sha occur. According to EN 1995-1-1, the g	C24 / T14 12 000 N/mm² 460 N/mm² 24 N/mm² 14,5 N/mm² 21 N/mm² 3.9 N/mm²	that adverse deformations is taken as a reference.	

The performance of the product specified above corresponds to the declared performance. The above-mentioned manufacturer is solely responsible for creating this Declaration of Performance in accordance with Regulation (EU) no. 305/2011.

Ybbs 01.02.2023